Journal of

The Chemical Society,

Chemical Communications

NUMBER 20/1977

19 OCTOBER

Investigation by Deuterium-labelling of the Isomerisation of Dihydroxyalkyl Radicals Formed upon Photolysis of Cobaloxime Complexes[†]

By BERNARD T. GOLDING,* CHARLES S. SELL, and PHILIP J. SELLARS (Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL)

Summary Anaerobic photolysis of 5-deuterio-4,5-dihydroxyhexyl(pyridine)cobaloxime at pH 3 gives 2-deuteriohexanal and probably 6-deuteriohexan-2-one.

ANAEROBIC photolysis of 4,5-dihydroxypentyl(pyridine)cobaloxime (1a) in 0·1 м acetic acid gives pentanal, pentane-1,2-diol, pent-1-ene-4,5-diol and decane-1,2,9,10-tetraol.¹⁻³ Under similar conditions, 5,6-dihydroxyhexyl(pyridine) cobaloxime (1b) gives as the carbonyl-containing products a mixture of hexanal and hexan-2-one, the latter predominating.^{2,3} We proposed that dihydroxyalkyl radicals released from cobalt in these reactions produce pentanal or hexan-2-one via 1,5-hydrogen shifts, whilst hexanal is formed via a less favourable 1,6-hydrogen shift. Pentan-2-one, a possible product from (1a) via a 1,4-hydrogen shift was not observed.^{1,3} We now present the results of experiments with specifically deuteriated (1a) and (1b) which sustain our proposal that intramolecular hydrogen shifts occur in dihydroxyalkyl radicals produced during photodecomposition of these cobaloximes.

RCo(dmg H)₂py

(1)

Cyclohex-2-en-1-one was reduced (LiAl²H₄-ether) to 1-deuteriocyclohex-2-en-1-ol§ which was ozonised. The resulting ozonide was directly reduced (NaBH₄) to 2-deuteriohexane-1,2,6-triol§ which was converted into 4-deuterio-2,2-dimethyl-4-(4-hydroxybutyl)-1,3-dioxolan.§ G.l.c.m.s. of the trimethylsilyl ether of this substance shows it to contain 94 \pm 1% ²H and 6 \pm 1% ¹H (at C-4). From the toluene-p-sulphonate was obtained (1c),§ which therefore contains 94% ²H at C-5 of the dihydroxyhexyl group. Irradiation (Pyrex filter) of a de-aerated 2.2 mm solution of (1c) in 0.1 M acetic acid at 291 K caused decomposition of the cobaloxime within 7 min. The resulting solution was extracted with pentane. G.l.c. of the pentane extract showed a ratio of hexan-2-one to hexanal of 1:5 [cf. hexan-2-one; hexanal = 3.7; 1 from $(1b)^{2,3}$]. Analysis of these products as their 2,4-dinitophenylhydrazones (DNP's) gave a combined yield of $4\cdot 1\%$ [cf. 16% hexan-2-one + 4% hexanal from $(1b)^{2,3}$]. A primary isotope effect strongly impedes the intramolecular 1,5-hydrogen shift but as expected, the rate of the competing 1,6-shift is largely unaffected and 2-deuteriohexanal (see below) is obtained from (1c) in similar yield to that of hexanal from (1b).

In another experiment, CCl₄ was used to extract (deuteriated) hexan-2-one and hexanal. After concentrating the combined extracts, ¹H n.m.r. spectroscopy of the concentrate showed the hexanal to be deuteriated at C-2 since H-1 appeared as a doublet (δ 9.75, J 1.76 Hz) (cf. triplet, δ 9.75, J 1.78 Hz in unlabelled hexanal). The signals from protons at C-5 and C-6 of hexan-2-one were not sufficiently resolved [even after addition of Eu₂(fod)₆] for the presence

† No reprints available.

[‡] On photolysis at pH 3, 3,4-dihydroxybutyl(pyridine)cobaloxime and 10,11-dihydroxyundecyl(pyridine)cobaloxime do not yield carbonyl product(s) derived from their dihydroxyalkyl group (see ref. 3).

§ Spectroscopic data for this compound are in accord with the assigned structure.

or absence of deuterium at C-6 to be discerned. Information on the deuterium content of the hexan-2-one was obtained by g.l.c.-m.s. of a pentane extract after photodecomposition of (1c). The mass spectrum of this hexan-2one shows it to contain $60 \pm 1\%$ hexan-2-one and $40 \pm 1\%$ $[^{2}H_{1}]$ hexan-2-one. Since the molecular ion of the $[^{2}H_{1}]$ hexan-2-one gives an ion of m/e 58 [CH₂-C(OH)CH₃]⁺ but not, significantly, m/e 59, its deuterium atom must be located at C-4, C-5, or C-6. As the selective transfer of deuterium from C-2 to C-4 or C-5 is improbable, it is highly likely that the deuterium is located at C-6.

Analogously, photolysis of 4,5-dihydroxy-1,1,5,5-tetradeuteriopentyl(pyridine)cobaloxime (1d) in 0.1 M acetic acid gave C²H₃(CH₂)₃C²HO (identified by electron impact mass spectrometry of its DNP), 1,1,5,5-tetradeuteriopentane-1,2-diol, 4,5-dihydroxy-1,1,5,5-tetradeuteriopent-1-ene (characterised by their ¹H n.m.r. spectra) and decane-1,2,9,10-tetraol (probably octadeuterio).

Schrauzer⁴ and Corey et al.⁵ have recently criticised the so-called free-radical mechanism⁶ for the adenosylcobala-

min-dependent reactions catalysed by diol dehydrase [e.g. $MeCHOHCH_2OH \rightarrow MeCH_2CH(OH)_2 \rightarrow MeCH_2CHO$]. We will evaluate their alternative mechanistic proposals elsewhere. The presently described results and our previous findings show that primary alkyl radicals attack 1,2-diols regioselectively, in processes which reveal substantial primary kinetic isotope effects. The derived dihydroxyalkyl radicals decompose to aldehyde-ketone product. We have simulated therefore some of the apparent features⁶ of the diol dehydrase reactions and whilst our results obviously do not constitute a proof of an enzymatic reaction pathway via organic radicals, they do show that such a pathway is possible in principle.

We thank the S.R.C. for support and Mr. R. Johnson of the P.C.M.U., Harwell, for g.l.c.-m.s. results.

(Received, 27th June 1977; Com. 647.)

- ¹ B. T. Golding, T. J. Kemp, E. Nocchi, and W. P. Watson, Angew. Chem. Internat. Edn., 1975, 14, 813.
 ² B. T. Golding, C. S. Sell, and P. J. Sellars, J.C.S. Chem. Comm., 1976, 773.
 ³ B. T. Golding, T. J. Kemp, C. S. Sell, P. J. Sellars, and W. P. Watson, unpublished work.
 ⁴ G. N. Schrauzer, Angew. Chem. Internat. Edn., 1977, 16, 233.
 ⁵ E. L. Corray, N. L. Corport, and M. L. H. Cropp. Parce. Natl. Acad. Sci. U.S. A. 1977, 74, 811.

- ⁵ E. J. Corey, N. J. Cooper, and M. L. H. Green, Proc. Natl. Acad. Sci. U.S.A., 1977, 74, 811.
- ⁶ R. H. Abeles and D. Dolphin, Accounts Chem. Res., 1976, 9, 114.

[¶] From these results the apparent primary kinetic isotope effect for intramolecular hydrogen transfer in the conversion of the 5,6dihydroxyhexyl radical into the 1-(hydroxy-I-hydroxymethyl)pentyl radical can be computed as 23 [n.b. (1c) contains 94 % $^{2}\mathrm{H}_{1}$, cf. text]. This agrees with a value derived from the change in ratio of hexan-2-one to hexanal [cf. photolysis of (1b) and (1c)] and substantially exceeds the 'theoretical maximum value' (cf. F. H. Westheimer, Chem. Rev., 1961, 61, 265).